Synthesis and characterization of bis(triphenylphosphine) (ketone) silver and bis (triphenylphosphine) bis (ketone) silver complexes Crystal structure of bis(triphenylphosphine) bis(diphenylcyclopropenone) silver tetrafluoroborate

Ching-Jane Lin ${ }^{a}$, See Lin ${ }^{\text {a,* }}$, Gene-Hsing Lee ${ }^{\mathrm{b}}$, Yu Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058, Taiwan
${ }^{b}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan 10764, Taiwan

Received 30 October 1996; revised 10 December 1996

Abstract

The bis(triphenylphosphine)silver complexes of (phenalenone) 6, (diphenylcyclopropenone) 7, (tropone) 8, bis(phenalenone) 9, bis(diphenylcyclopropenone) 10 and bis(tropone) 11 were prepared by treating bis(triphenylphosphine)silver tetrafluoroborate 5 with the respective basic ketones phenalenone 2, diphenylcyclopropenone 3 or tropone 4 in 1 or 2 equiv. amounts. The first crystal structure of diphenylcyclopropenone adduct (complex 10, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$ (diphenylcyclopropenone) ${ }_{2} \mathrm{Ag}^{+} \mathrm{BF}_{4}^{-}$) was determined confirming the silver to oxygen σ-bonds. The complex 10 crystallizes in the monoclinic space group $P 2_{1 / c}$, with $a=10.419$ (3) $\AA, b=25.291(7) \AA, c=$ $20.711(4) \AA, \beta=91.916(4)^{\circ}, Z=4, V=5454.6(24) \AA^{3}, R_{F}=0.077, R_{W}=0.083$ for 7114 reflections. © 1997 Elsevier Science S.A.

1. Introduction

Transition metal complexes of ketones in the formation of simple adducts such as $\mathrm{FeCl}_{3} \cdot \mathrm{CO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{NiBr} \cdot \mathrm{CO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ have been known for over 80 years [1]. In all of these cases, the oxygen is presumed to be bonded to the metal ions [2]. About 2 decades ago, an interest in complexes of the carbonyl function with organotransition-metal groups developed. In 1971, Silverthorn reported the iron complex la, a novel iron ketone complex ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$)Fe(dppe) (OCMe_{2}) where dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ [3]. This complex is not stable to either air or moisture, unable to be isolated. Later, Rosenblum and coworkers prepared various Fp(carbonyl) ${ }^{+}$complexes derived from simple and conjugated ketones, aldehydes, esters and amides where $\mathrm{Fp}=\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ [4]. In 1982, Boudjouk et al. also prepared the complexes of Fp (carbonyl), 1b-1d [5] (Scheme 1).

Phenalenone 2, diphenylcyclopropenone 3 and tro-

[^0]

Scheme 1.
pone 4 are typical basic ketones. The highly polar nature of the carbon-oxygen bond is due to a significant degree to the contributions of resonance forms $\mathbf{2}^{\prime}$, 3^{\prime} and 4^{\prime} [6] (Scheme 2). The resonance forms $2^{\prime}, 3^{\prime}$ and 4^{\prime} apparently play an important role during the reactions, favoring the rapid formation of stable oxygenmetal bonds.

Scheme 2.
In the past few years, Gladysz and coworkers conducted extensive studies on rhenium complexes of aldehydes and ketones and found that the coordinated carbonyl groups are activated toward nucleophilic attack [7].
Last year we successfully prepared a series of copper(I) complexes of ketones $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\text { ketone })_{n} \mathrm{Cu}^{+} \mathrm{BF}_{4}^{-} \quad(n=1,2)$ [8]. Recently we extended the same approach to the synthesis of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\text { ketone })_{n} \mathrm{Ag}^{+} \mathrm{BF}_{4}^{-}$complexes ($n=1,2$) as reported herein.

2. Results and discussion

The starting material $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}^{+} \mathrm{BF}_{4}^{-} 5$ was obtained from the reaction of stoichiometric amounts of

Table 1
Comparison of carbonyl stretching frequencies

Complex	Ketone	$\nu \mathrm{CO}\left(\mathrm{cm}^{-1}\right)$		
		Uncoordinated	Coordinated	Δ
$\mathbf{6}$	$\mathbf{2}$	1644	1539	105
$\mathbf{7}$	$\mathbf{3}$	1626	1545	81
$\mathbf{8}$	$\mathbf{4}$	1582	1518	73
$\mathbf{9}$	$\mathbf{2}$	1644	1541	103
$\mathbf{1 0}$	$\mathbf{3}$	1626	1548	78
$\mathbf{1 1}$	$\mathbf{4}$	1582	1519	72

Spectra obtained in KBr pellets.
tertiary phosphine ligand with silver tetrafluoroborate in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{1}$ The treatment of 5 with ketones 2 , 3 and 4 in 1 and 2 equiv. amounts furnished complexes $6-11$ in high yields (Scheme 3).

Both bis(triphenylphosphine)(ketone)silver and bis(triphenylphosphine)bis(ketone)silver complexes are stable to air and soluble in common organic solvents such as chloroform and dichloromethane. While numerous simple metal halide adducts of 2 [10], 3 [11] and 4 [12], all presumably σ-bonded to oxygen, have been prepared characterized by very low solubility.

The reduction in the carbonyl stretching frequency for attachment of metal to oxygen has been reported [4-7]. As summarized in Table l, the IR $\nu(\mathrm{CO})$ of complexes 6-11 are generally $72-105 \mathrm{~cm}^{-1}$ lower than those of free ketones. The magnitudes of the $\Delta \nu(\mathrm{CO})$ values parallel closely those observed for complexes 1a-1c [5]. On the other hand, the UV spectra of these complexes do not exhibit significant shifts, except com-

Scheme 3.

Table 2
Comparison of ultraviolet spectra

	$\lambda_{\max } / \mathrm{nm}(\log \varepsilon)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
PNLNo 2	$315(3.58), 357(3.99), 381(3.93)$
Complex 6	$358(3.62), 382(3.71), 438(3.82)$
Complex 9	$358(3.61), 381(3.73), 438(3.84)$
DPCPo 3	$226(4.28), 295(4.43)$
Complex 7	$228(4.23), 296(4.11)$
Complex 10	$230(4.28), 298(4.22)$
TROPo 4	$229(4.21), 303(3.78)$
Complex 8	$230(4.42), 302(3.41)$
Complex 11	$231(4.26), 300(3.92)$

plex 6 and complex 9. Both complex 6 and complex 9 show bathochromic shifts in the region above 300 nm (see Table 2).

The ORTEP diagram of complex 10 is given in Fig. 1. The molecular features confirm that the Ag atom is σ-bonded to two diphenylcyclopropenone O atoms. The crystal structure of complex 10 consists of discrete $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}(\mathrm{DPCPO})_{2}^{+} \quad$ cations $\quad(\mathrm{DPCPO}=$ diphenylcyclopropenone) and BF_{4}^{-}anions. The $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}$ (DPCPO) $)_{2}$ cations exhibit in the solid state a distorted tetrahedron for the central Ag coordination. The six angles around the $\mathrm{Ag}(\mathrm{I})$ center range from $\mathrm{O} 1-\mathrm{Ag}-\mathrm{O} 2$ of $89.7(4)^{\circ}$ to $\mathrm{P} 1-\mathrm{Ag}-\mathrm{P} 2$ of $158.83(21)^{\circ}$. The O 2 -diphenylcyclopropenone is characterized with alternately single and double bonds for the three cyclic carbon atoms C 16 to C 18 , whereas in the O1-diphenylcyclopropenone the fragment $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ is delocalized. The ketonic O angles are $128.1(20)^{\circ}$ for $\mathrm{Ag}-\mathrm{O} 2-\mathrm{C} 16$ and $139.2(12)^{\circ}$ for $\mathrm{Ag}-\mathrm{O} 1-\mathrm{C} 1$, suggesting that the ketonic O 2 is more sp^{2}-like in bonding and Ol probably more sp-like. The Ag-P1 distance of $2.400(4) \AA$ and the

Ag-P2 distance of 2.395(5) \AA do not differ significantly from the corresponding $\mathrm{Ag}-\mathrm{P}$ distances in the $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}^{+} \mathrm{NO}_{3}$ of $2.443(1) \AA$ and of $2.440(1) \AA$ [13]. The $\mathrm{Ag}-\mathrm{O} 1$ distance of 2.6443 (1) \AA and the $\mathrm{Ag}-\mathrm{O} 2$ distance of $2.471(19) \AA$ are also quite similar to the corresponding $\mathrm{Ag}-\mathrm{O} 2$ distance in the $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}^{+} \mathrm{NO}_{3}^{-}$ of $2.649(4) \AA$ and of $2.464(4) \AA$. Furthermore, all structural parameters are pretty reasonable compared to the literature values [13-15].

3. Conclusion

In this work we prepared and characterized six new bis(triphenylphosphine)silver complexes of basic ketones (6-11). We also determined the first molecular structure of the complex of diphenylcyclopropenone.

4. Experimental section

4.1. General information

All solvents were routinely purified by standard procedures and stored under nitrogen [16]. All reactions were carried out in dry solvents under oxygen-free nitrogen. Commercial reagents including diphenylcyclopropenone, AgBF_{4} and $\mathrm{Ph}_{3} \mathrm{P}$ (Aldrich) were used without further purification. Phenalenone [17], tropone [18] and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{AgBF}_{4}$ [9] were prepared following the published methods.

Infrared spectra were recorded on a Jasco FT/IR 300 E spectrometer. ${ }^{1}$ H NMR spectra were registered on a

Fig. 1. Molecular structure of complex 10.

Bruker AC 400 NMR spectrometer. Ultraviolet spectra were measured on a Perkin-Elmer Lambda 5 spectrometer. Elemental analyses were done at the Analysis Center of National Cheng Kung University.

4.2. X-ray crystallographic analyses for complex 10

White crystals of complex 10 were prepared by diffusion of hexane into a concentrated dichloromethane solution of complex 10 under nitrogen and at $4^{\circ} \mathrm{C}$. The single crystal X-ray diffraction measurements were performed on a Nonius CAD-4 automated diffractometer using graphite monochromated Mo $\mathrm{K} \alpha$ radiation. 25 high-angle reflections ($15.00<2 \theta<21.68^{\circ}$) were used in a least squares fit to obtain accurate cell constants. The monoclinic space group $P 2_{1 / c}$ was assigned on the basis of the systematic absences. Diffraction intensities were collected up to $2 \theta<45^{\circ}$ using the $\theta-2 \theta$ scan technique. The reflections with $I_{0}>2.0 \sigma\left(I_{0}\right)$ were judged as observations and used for solution and structure refinement. Data were corrected for Lorentz-polarization factors. An empirical absorption correction based on a series of Ψ scans was applied to the data. The structure was solved by direct methods [19] and refined by a full-matrix least squares routine [20] with anisotropic thermal parameters for all non-hydrogen atoms. All of the hydrogen atoms were placed isotropically at their calculated positions and fixed in the calculations. For a summary of crystal data and refinement details, see Table 3. Selected bond distances and

Table 3
Crystallographic data and refinement details for complex 10

Empirical formula	$\mathrm{C}_{66} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{AgBF}_{4}$
Formula mass (g)	1130.72
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.03 \times 0.25 \times 0.40$
Crystal system	monoclinic
Space group	$P 21 / c$
$a(\AA)$	$10.291(3)$
$b(\AA)$	$25.291(7)$
$c(\AA)$	$20.711(4)$
$\beta($ deg $)$	$91.916(22)$
$V\left(\AA^{3}\right)$	$5454.6(24)$
Z	4
$D_{\text {calc. }}\left(\mathrm{gcm}^{-3}\right)$	1.377
$\lambda(\AA)$	0.7107
$F(000)$	2313
$\mu($ mm	
$2 \theta($ max $)$	4.794
$h ; k ; l$ range	45.0
No. of reflections	$-11,11 ; 0,27 ; 0,22$
No. of unique reflections	7114
No. reflections with $I>2.0 \sigma(\mathrm{I})$	2362
R_{F}	7114
R_{w}	0.077
$G O F$	0.083

$R_{F}=\Sigma\left(F_{0}-F_{\mathrm{c}}\right) / \Sigma\left(F_{\mathrm{o}}\right)$.
$R_{w}=\left[\Sigma \theta\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right) / \Sigma\left(w F_{\mathrm{o}}^{2}\right)\right]^{1 / 2}$.

Table 4
Selected bond distances (\AA) for complex 10

$\mathrm{Ag}-\mathrm{P} 1$	$2.400(4)$
$\mathrm{Ag}-\mathrm{P} 2$	$2.395(5)$
$\mathrm{Ag}-\mathrm{O} 1$	$2.623(14)$
$\mathrm{Ag}-\mathrm{O} 2$	$2.471(19)$
$\mathrm{P} 1-\mathrm{C} 31$	$1.820(20)$
$\mathrm{P} 1-\mathrm{C} 37$	$1.823(18)$
$\mathrm{P} 1-\mathrm{C} 43$	$1.829(22)$
$\mathrm{P} 2-\mathrm{C} 49$	$1.812(19)$
$\mathrm{P} 2-\mathrm{C} 55$	$1.797(18)$
$\mathrm{P} 2-\mathrm{C} 11$	$1.792(20)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.21(3)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.12(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.40(3)$
$\mathrm{C} 1-\mathrm{C} 3$	$1.41(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.36(3)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.45(3)$
$\mathrm{C} 3-\mathrm{C} 10$	$1.66(5)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.54(7)$
$\mathrm{C} 16-\mathrm{C} 18$	
$\mathrm{C} 17-\mathrm{C} 18$	$1.47(7)$
$\mathrm{C} 17-\mathrm{C} 19$	$1.66(6)$
$\mathrm{C} 18-\mathrm{C} 25$	$1.61(8)$

angles are listed in Tables 4 and 5. Selected atomic coordinates are listed in Table 6.

4.3. Bis(triphenylphosphine)(phenalenone)silver tetrafluoroborate 6

A 100 ml Schlenk flask that had been oven-dried and purged with nitrogen was charged with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{AgBF}_{4}$ $0.36 \mathrm{~g}(0.5 \mathrm{mmol})$, phenalenone $0.09 \mathrm{~g}(0.5 \mathrm{mmol})$ and

Table 5
Selected bond angles (deg) for complex 10

$\mathrm{P} 1-\mathrm{Ag}-\mathrm{P} 2$	$158.83(21)$
$\mathrm{P} 1-\mathrm{Ag}-\mathrm{O} 1$	$91.7(3)$
$\mathrm{P} 1-\mathrm{Ag}-\mathrm{O} 2$	$89.7(4)$
$\mathrm{P} 2-\mathrm{Ag}-\mathrm{O} 1$	$97.8(3)$
$\mathrm{P} 2-\mathrm{Ag}-\mathrm{O} 2$	$107.5(4)$
$\mathrm{O} 1-\mathrm{Ag}-\mathrm{O} 2$	$98.7(6)$
$\mathrm{Ag}-\mathrm{P} 1-\mathrm{C} 31$	$117.9(6)$
$\mathrm{Ag}-\mathrm{P} 1-\mathrm{C} 37$	$113.0(6)$
$\mathrm{Ag}-\mathrm{P} 1-\mathrm{C} 43$	$109.16)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 37$	$103.2(8)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 43$	$106.7(8)$
$\mathrm{C} 37-\mathrm{P} 1-\mathrm{C} 43$	$106.1(9)$
$\mathrm{Ag}-\mathrm{P} 2-\mathrm{C} 49$	$109.0(6)$
$\mathrm{Ag}-\mathrm{P} 2-\mathrm{C} 55$	$117.4(6)$
$\mathrm{Ag}-\mathrm{P} 2-\mathrm{C} 61$	$114.6(6)$
$\mathrm{C} 49-\mathrm{P} 2-\mathrm{C} 55$	$106.5(9)$
$\mathrm{C} 49-\mathrm{P} 2-\mathrm{C} 61$	$106.3(8)$
$\mathrm{C} 55-\mathrm{P} 2-\mathrm{C} 61$	$102.2(9)$
$\mathrm{Ag}-\mathrm{O} 1-\mathrm{C} 1$	$139.2(12)$
$\mathrm{Ag}-\mathrm{O} 2-\mathrm{C} 16$	$128.1(20)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$152.9(20)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3$	$149.2(20)$
$\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 17$	$166(3)$
$\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 18$	$123(4)$

Table 6
Final atomic fractional coordinates for non-H atoms of complex 10

Atom	x	y	z	$B_{\text {iso }}$
Ag	$0.32252(16)$	0.03009(10)	0.23148(7)	6.65(10)
P1	$0.3995(5)$	0.0243 (3)	$0.34178(21)$	4.2(10)
P2	0.1849(5)	0.0165(3)	$0.13802(22)$	4.4(3)
O1	0.5239(13)	-0.0208(6)	0.1910 (7)	6.5(8)
O2	0.4072(17)	0.1212(8)	0.2257(9)	9.8(11)
C1	0.5864(18)	-0.0598(8)	$0.2045(9)$	4.5(11)
C2	0.6071(17)	-0.1143(8)	0.2051(9)	4.4(11)
C3	0.6990(18)	-0.0825(8)	0.2323(8)	4.2(10)
C4	0.5630(18)	-0.1637(8)	$0.1919(10)$	4.8(11)
C5	0.4364(19)	-0.1761(9)	0.1790(10)	5.6(13)
C6	0.396 (3)	-0.2273 (12)	$0.1675(14)$	10.1(18)
C7	0.485(4)	-0.2683(13)	$0.1711(24)$	18.2(35)
C8	0.608(3)	-0.2594(13)	$0.185(3)$	22.2(44)
C9	0.646(3)	-0.2070(11)	$0.1935(17)$	11.4(21)
C10	0.8179(18)	-0.0785(8)	0.2704(8)	4.3(10)
C11	0.8789(20)	-0.1232(9)	$0.2920(10)$	6.1(13)
C12	0.9899(22)	-0.1185(11)	0.3323(11)	$7.6(15)$
C13	1.0328(22)	-0.0677(12)	0.3460 (10)	$7.9(15)$
C14	$0.9744(22)$	-0.0228(11)	$0.3241(10)$	7.8(15)
C15	0.8636(20)	-0.0293(10)	0.2853(10)	5.9(12)
C16	0.430(3)	$0.1445(12)$	$0.1818(14)$	10.6(20)
C17	0.468(4)	$0.1906(16)$	0.1286(19)	16.7(32)
C18	0.336(6)	0.185 (3)	$0.151(3)$	28.0(59)
C19	0.604(4)	$0.2090(17)$	$0.0960(22)$	18.5(34)
C20	0.696(5)	$0.2176(18)$	$0.1423(22)$	19.3(37)
C21	0.825(6)	$0.2369(24)$	0.119 (3)	24.8(49)
C22	0.811(5)	$0.2587(20)$	0.042(3)	22.7(45)
C23	0.667(4)	$0.2419(14)$	0.0270 (17)	13.7(26)
C24	0.561 (7)	$0.226(3)$	0.020 (3)	30.4(65)
C25	0.255(4)	$0.2164(18)$	0.0954(20)	17.4(33)
C26	0.252(4)	$0.2438(19)$	0.0278(21)	18.3(36)
C27	0.161(4)	$0.2645(19)$	$0.0097(22)$	19.2(37)
C28	0.051(5)	$0.2657(20)$	0.0403(21)	19.7(37)
C29	0.036(4)	$0.2455(20)$	$0.1144(22)$	19.2(37)
C30	0.171 (4)	0.2171 (19)	$0.1317(20)$	17.8(35)
C31	0.5333(17)	0.0665(8)	0.3672(8)	3.9 (9)
C32	0.5456(17)	0.0853(8)	0.4303(9)	4.4(11)
C33	0.6467(19)	$0.1154(10)$	0.4493(10)	6.0 (12)
C34	0.7427(19)	$0.1254(9)$	$0.4089(11)$	$6.2(13)$
C35	0.7360(18)	$0.1051(9)$	0.3473(12)	6.1(13)
C36	0.6303(18)	0.0744(9)	0.3267(9)	5.0(11)
C37	0.2768(16)	$0.0242(10)$	0.4961(8)	4.0(10)
C38	0.2568(17)	$0.0096(9)$	0.4542(8)	4.6(11)
C39	$0.1668(16)$	$0.0242(10)$	0.4961(8)	5.6(12)
C40	0.0932(19)	0.0686(11)	$0.4837(10)$	7.1(14)
C41	$0.1091(19)$	$0.1000(9)$	$0.4280(10)$	5.9(12)
C42	0.2038(18)	0.0834(8)	0.3876 (9)	4.5(10)
C43	0.4487(16)	-0.0438(8)	0.3591(8)	4.1(10)
C44	0.3802(19)	-0.0852(10)	$0.3315(9)$	5.6(12)
C45	0.416(3)	-0.1367(10)	0.3439(11)	7.7(16)
C46	0.5204(24)	-0.1472(9)	$0.3800(11)$	6.8(15)
C47	0.5946(24)	-0.1090(10)	$0.4045(12)$	7.4(15)
C48	0.5632(19)	$-0.0567(8)$	$0.3953(8)$	4.6(11)
C49	0.2524(18)	0.0501(8)	0.0697(8)	4.3(10)
C50	0.3833(20)	0.0452(9)	0.0617(9)	$5.5(12)$
C51	$0.4412(22)$	$0.0717(10)$	$0.0105(10)$	6.6 (14)
C52	0.3723(24)	0.0997(11)	-0.0314(10)	8.1(15)
C53	0.2484(25)	$0.1046(10)$	-0.0271(9)	7.0(15)
C54	$0.1835(20)$	$0.0796(9)$	0.0233(9)	5.6(12)
C55	0.0215(17)	0.0386(9)	0.1421(8)	4.2(10)
C56	-0.0800(18)	0.0126 (9)	0.1122(9)	5.1(12)
C 57	-0.2044(18)	0.0324(11)	0.1171(9)	6.6(13)

Table 6 (continued)

Atom	x	y	z	$B_{\text {iso }}$
C58	$-0.2288(20)$	$0.0769(11)$	$0.1517(10)$	$7.1(14)$
C59	$-0.1230(22)$	$0.1044(10)$	$0.1798(10)$	$6.7(13)$
C60	$-0.0010(20)$	$0.0848(10)$	$0.1754(10)$	$6.4(13)$
C61	$0.1652(16)$	$-0.0513(7)$	$0.1145(8)$	$3.4(9)$
C62	$0.1844(20)$	$-0.0687(9)$	$0.0533(9)$	$5.6(13)$
C63	$0.1584(23)$	$-0.1211(11)$	$0.0391(10)$	$7.9(16)$
C64	$0.1140(23)$	$-0.1563(10)$	$0.0844(12)$	$7.5(16)$
C65	$0.0940(20)$	$-0.1373(10)$	$0.1472(10)$	$6.6(13)$
C66	$0.1224(19)$	$-0.0851(9)$	$0.1608(9)$	$5.3(11)$
B	$1.012(3)$	$0.2139(14)$	$0.3017(14)$	$7.9(19)$
P1	$1.0699(20)$	$0.1727(7)$	$0.2918(9)$	$14.5(14)$
P2	$0.8885(18)$	$0.2138(9)$	$0.2797(11)$	$16.2(16)$
P3	$0.988(3)$	$0.2237(8)$	$0.3650(9)$	$19.5(21)$
P4	$1.0496(22)$	$0.2589(8)$	$0.2785(14)$	$19.0(20)$

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 30 min . After being cooled to room temperature, the reaction mixture was filtered and n-hexane added to the filtrate to precipitate a bright golden solid. The solid was collected and washed with benzene until the washings were colorless, giving analytically pure $6(0.37 \mathrm{~g}$, 82%). M.p. $181-185^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.63$ $(\mathrm{d}, 1 \mathrm{H}, 4 \mathrm{~Hz}), 8.22(\mathrm{~d}, 1 \mathrm{H}, 4 \mathrm{~Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, 4 \mathrm{~Hz})$, $7.81-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 30 \mathrm{H}), 6.73(\mathrm{~d}, 1 \mathrm{H}$, 6 Hz). Anal. Found: 65.04; $\mathrm{H}, 4.31 . \mathrm{C}_{49} \mathrm{H}_{38} \mathrm{AgBF}_{4} \mathrm{OP}_{2}$ calc.: C, 65.43; H, 4.23.

4.4. Bis(triphenylphosphine)(diphenylcyclopropenone)silver tetrafluoroborate 7

This was prepared by a method similar to that described above by using $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{AgBF}_{4} 0.36 \mathrm{~g}$ (0.5 mmol), diphenylcyclopropenone $0.103 \mathrm{~g}(0.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature. The product was obtained as a white solid ($0.38 \mathrm{~g}, 81 \%$). M.p. $158-163^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, 2 \mathrm{H}, 4 \mathrm{~Hz}), 7.97(\mathrm{~d}, 4 \mathrm{H}, 4 \mathrm{~Hz})$, 7.59-7.45 (m, 4H), 7.47-7.389 (m, 30H). Anal. Found: C, 66.27; $\mathrm{H}, 4.59 . \mathrm{C}_{51} \mathrm{H}_{40} \mathrm{AgBF}_{4} \mathrm{OP}_{2}$ calc.: $\mathrm{C}, 66.18$; H , 4.33.

4.5. Bis(triphenylphosphine)(tropone)silver tetrafluoroborate 8

This was prepared by a method similar to that described above by using $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{AgBF}_{4} 0.36 \mathrm{~g}$ (0.5 mmol), tropone $0.0503 \mathrm{~g}(0.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml). The mixture was stirred for 30 min at room temperature. The product was obtained as a light purple solid ($0.30 \mathrm{~g}, 74 \%$). M.p. $152-157^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.77-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.41(\mathrm{~m}, 4 \mathrm{H})$,
7.31-7.26 (m, 30H). Anal. Found: C, 62.36; H, 4.40. $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{AgBF}_{4} \mathrm{OP}_{2}$ Calc.: $\mathrm{C}, 62.57$; $\mathrm{H}, 4.37$.

4.6. Bis(triphenylphosphine)bis(phenalenone)silver tetrafluoroborate 9

This was prepared by a method similar to that described above by using $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{AgBF}_{4} \quad 0.36 \mathrm{~g}$ (0.5 mmol), phenalenone $0.180 \mathrm{~g}(1.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml). The mixture was stirred for 30 min at $40^{\circ} \mathrm{C}$. The product was obtained as an orange-yellow solid $(0.46 \mathrm{~g}, 85 \%)$. M.p. $156-160^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, 2 \mathrm{H}, 6 \mathrm{~Hz}), 8.20(\mathrm{~d}, 2 \mathrm{H}, 8 \mathrm{~Hz}), 8.02$ $(\mathrm{d}, 2 \mathrm{H}, 8 \mathrm{~Hz}), 7.77-7.62(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 30 \mathrm{H})$, 6.68 (d, $2 \mathrm{H}, 10 \mathrm{~Hz}$). Anal. Found: C, $68.62 ; \mathrm{H}, 4.36$. $\mathrm{C}_{62} \mathrm{AgBF}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ calc.: $\mathrm{C}, 68.98$; $\mathrm{H}, 4.27$.

4.7. Bis(triphenylphosphine)bis(diphenylcyclopropenone)silver tetrafluoroborate 10

This was prepared by a method similar to that described above by using $\mathrm{AgBF}_{4} 0.36 \mathrm{~g}$ (0.5 mmol), diphenylcyclopropenone $0.206 \mathrm{~g}(1.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml). The mixture was stirred for 30 min at room temperature. The product was obtained as a white solid ($0.46 \mathrm{~g}, 82 \%$). M.p. $112-116^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.01-7.71(\mathrm{~m}, 20 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 30 \mathrm{H})$. Anal. Found: C, 70.51; $\mathrm{H}, 4.80 . \mathrm{C}_{66} \mathrm{H}_{50} \mathrm{AgBF}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ calc.: C , 70.08; H, 4.42.

4.8. Bis(triphenylphosphine)bis(tropone)silver tetrafluoroborate 11

This was prepared by a method similar to that described above by using $\mathrm{AgBF}_{4} 0.36 \mathrm{~g}$ (0.5 mmol), tropone $0.106 \mathrm{~g}(1.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature. The product was obtained as a light brown solid $(0.33 \mathrm{~g}$, 72%). M.p. $104-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69-7.55$ (m, 12H), 7.41-7.23 (m, 30H). Anal. Found: C, 64.66; $\mathrm{H}, 4.63 . \mathrm{C}_{50} \mathrm{H}_{42} \mathrm{AgBF}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ calc.: $\mathrm{C}, 64.47 ; \mathrm{H}, 4.51$.

5. Supplementary material

Complete bond distances, bond angles, atomic coordinates, anisotropic thermal parameters, torsion angles and plane calculations for complex 11 are available. Ordering information is given on any current masthead page.

Acknowledgements

We thank the National Science Council of the Republic of China for financial support of this research.

References

[1] I. Lindquist, Inorganic Adduct Molecules of Oxo-Compounds, Academic Press, New York, 1963.
[2] (a) W.D. Bannister, M. Green and R.N. Haszeldine, J. Chem. Soc. A:, (1966) 194. (b) M.A. Bennet and G.A. Sim, J. Chem. Soc. Dalton Trans., (1971) 95. (c) A.D.U. Hardy and G.A. Sim, J. Chem. Soc. Dalton Trans. (1972) 2305. (d) F.W. Grevels, D. Schutz and E.K. von Gustorf, Angew. Chem., 13 (1974) 534. (e) A.N. Nesmeyanov, L.V. Rybin, N.T. Gubenko, M.I. Rybinskaya and P.V. Petrovskii, J. Organomet. Chem., 71 (1974) 271.
[3] W. Silverthorn, J. Chem. Soc., (1971) 1310.
[4] B.M. Foxman, P.T. Klemarczyk, R.E. Liptrot and M. Rosenblum, J. Organomet. Chem., 187 (1980) 253.
[5] P. Boudjouk, J.B. Woell, J. Radonovich and M.W. Eyring, Organometallics, 1 (1982) 582.
[6] (a) G. Culbertson and R. Pettit, J. Am. Chem. Soc., 85 (1963) 741. (b) R. Breslow, T. Eicher, A. Krebs, R.A. Peterson and J. Posner, J. Am. Chem. Soc., 87 (1965) 1320.
[7] (a) C.M. Garner, N.Q. Mendez, J.J. Kowalczyk, J.M. Fernandez, K. Emerson, R.D. Larson and J.A. Gladysz, J. Am. Chem., Soc., 112 (1990) 5146. (b) N.Q. Mendez, A.M. Arif and J.A. Gladysz, Angew. Chem. Int. Ed. Engl., 29 (1990) 1473. (c) N.Q. Mendez, C.L. Mayne and J.A. Gladysz, Angew. Chem. Int. Ed. Engl., 29 (1990) 1475. (d) D.M. Dalton, J.M. Fernandez, K. Emerson, R.D. Larson, A.M. Arif and J.A. Gladysz, J. Am. Chem. Soc., 112 (1990) 9198. (e) D.P. Klein, D.M. Dalton, N.Q. Mendez, A.M. Arif and J.A. Gladysz, J. Organomet. Chem., 410 (1991) C7. (f) D.M. Dalton, C.M. Garner, J.M. Fernandez and J.A. Gladysz, J. Org. Chem., 56 (1991) 6823. (g) I.S. Liamas, D.M. Dalton, A.M. Arif and J.A. Gladysz, Organometallics, 11 (1992) 683. (h) F. Agbossou, J.A. Ramsden, Y.H. Huang, A.M. Arif and J.A. Gladysz, Organometallics, 11 (1992) 693.
[8] S. Lin, C.J. Lin, S.T. Cheng, Y.S. Wen and L.K. Liu, Inorg. Chim. Acta, in press.
[9] F.G. Mann, A.F. Wells and D. Purdie, J. Chem. Soc., (1937) 1828.
[10] A. Mohammad, D.P.N. Satchell and R.S. Satchell, J. Chem. Soc. B: (1967) 723.
[11] C.W. Bird and E.M. Briggs, J. Chem. Soc. A: (1967) 1004.
[12] P.S. Gentile, P. Jargiello, T.A. Shankoff and J. Carlotto, J. Inorg. Nucl. Chem., (1967) 1665.
[13] P.F. Barron, J.C. Dyason, P.C. Healy, L.M. Engelhardt, B.W. Skelton and A.H. White, J. Chem. Soc. Dalton Trans., (1986) 1965.
[14] G.A. Bowmaker, Effendy, J.V. Hanna, P.C. Healy, B.W. Skelton and A.H. White, J. Chem. Soc. Dalton Trans., (1993) 1387.
[15] (a) K.M. Chi, K.H. Chen, H.C. Lin and K.J. Lin, Polyhedron, in press. (b) T.S.A. Hor, S.P. Neo, C.S. Tan, T.C.W. Mak, K.W.P. Leung and R.J. Wang, Inorg. Chem., 31 (1992) 4510.
[16] D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, New York, 1980.
[17] L.F. Fischer and E.B. Hershberg, J. Am. Chem. Soc., 60 (1938) 1658.
[18] P. Radlick, J. Org. Chem., 29 (1964) 960.
[19] P. Main, in G.M. Sheldrick, C. Krueger and R. Goddard (eds.), Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, Clarendon Press, Oxford, 1985, pp. 206-215.
[20] E.J. Gabe, F.L. Lee and Y. Le Page, in G.M. Sheldrick, C. Krueger and R. Goddard (eds.), Crystallographic Computing 3 Data Collection, Structure Determination, Protein and Databases, Clarendon Press, Oxford, 1985, pp. 167-174.

[^0]: * Corresponding author. Fax: $(+886) 047211190$.

